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MECHANICS OF FRACTURE OF COATINGS AND FILMS 

A. G. Cherepanov and G. P. Cherepanov UDC 539.375:621.01 

Introduction. The thin surface layer of any material has specific properties which 
can be attributed to interaction of the material with its environment. The nature of this 
interaction may be chemical, thermal, or physicomechanical in nature. As a rule, an initial 
fatigue crack is initiated in the surface layer of materials and structures, and the growth 
of this crack ultimately leads to exhaustion of the safe life of the structure or structural 
element. It is therefore natural that the condition of the surface layer (and the control 
of its properties) is one of the foremost problems currently occupying technologists and 
engineers [I, 2]. The efficient utilization of materials in industry depends in large part 
on the solution of this problem. 

The surface layer and the body of a material can be regarded together as a composite, 
one of the components of which is the surface layer [3]. The most important characteristics 
of this layer are its special protective properties, which depend on its chemical composi- 
tion and microstructure, the adhesive strength and crack resistance of the layer proper, and 
the contact of the layer with the substrate. The properties of the surface layer are af- 
fected by hydrogen and corrosion in gaseous media and aqueous solutions, wear, catalysis, 
welding and soldering, erosion, passivation, adhesion, sintering and ablation, and the 
presence of inhibitors. 

Various methods are used to control the mechanical, chemical, magnetic, electrical and 
other properties of the surface layer. These methods can be classified as follows. 

Mechanical Methods. This class of methods includes shot-blasting (to work-harden the 
surface), hammering, and impact strain-hardening. These methods produce high compressive 
residual stresses in the surface layer and retard crack nuclei in the layer. 

Lacquer Coating and Oxide Films. Lacquer coatings and oxide films serve as chemical 
protection for the material from the effects of the environment. 

Deposition Methods. Deposition methods make it possible to obtain new surface layers 
with a composition and microstructure different from the composition and microstructure of 
the substrate material. This class of methods includes plasma deposition, ion deposition, 
chemical and physical deposition from vapors, and electrolytic deposition. 

Methods of Chemico-Physical Modification. Methods of chemico-physical modification of 
a material make it possible to Change the mechanical and physicochemical properties of the 
surface layer. This class of methods includes special heat treatments, ion nitriding and 
cementation, ion implantation, and treatment with laser and electron beams. Under natural 
conditions, metal is usually protected by an oxide film. 
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Glass Etching. Etching of glass leads to dissolution of a crack-saturated surface layer 
on a glass object. The layer dissolves into the body of the glass. This process signifi- 
cantly improves glass strength (albeit only for a certain period of time - until new cracks 
are nucleated in the surface). 

The most promising methods are ion implantation and laser treatment. 

Ion Implantation. This process can be used to introduce almost any element into the 
surface layer of any solid. The solid is placed in a vacuum chamber. The new element is 
introduced by means of a beam of high-velocity ions. The energy of the beam particles is 
on the order of 0.i-i0 MeV. The ions are introduced into the material to a depth on the 
order of 0.01-i ~m. This method of surface-alloying metals opens up nearly limitless pos- 
sibilities for forming unusual metastable structures and compounds in the surface layer - 
structures and compounds which could normally not be formed, due to the thermodynamics of 
equilibrium and slightly nonequilibrium processes. 

Laser Treatment. This process involves the rapid scanning of a surface by a continuous 
or pulsed laser beam. The beam causes local melting of the thin surface layer, which then 
cools extremely rapidly due to the tight contact with the mass of cold material at the in- 
terface. Here, the thickness of the layer may vary within the range 10-1-10 3 ~m, while the 
rate of its cooling reaches 10a-10 I~ K/sec. Given these cooling rates, metastable ultra- 
microcrystalline and amorphous structures can form in the surface. These structures are 
characterized by high strength and exceptionally high fatigue and corrosion resistance, 
due to the absence of crack nuclei and dislocations in amorphous metals. 

Wide use is also being made of combination methods which produce a surface layer with 
a complex, multilayered structure. An example of this approach would be cold-working of 
the surface by shot-blasting, followed by anodizing, applicationof an epoxy primer, and 
application of a lacquersurface coating. The result here would be a four-layer surface 
layer. 

We will describe the solution of several problems which illustrate the main problems 
encountered in the fracture mechanics of coatings. The concept of a coating is equivalent 
to the concept of a surface layer or film. 

Optimization of Coatings. Under the influence of alternating loads applied over a 
period of time, a fatigue-type transverse edge crack develops in a surface layer. This crack 
may grow into the base metal and lead to premature failure of the structural element. We 
will derive the necessary equal-strength condition that will allow us to forestall such an 
event through optimum selection of the fracture toughness of the layer, base metal, and in- 
terface. 

Let a normal-rupture fatigue crack cross an entire layer of thickness h and reach the 
interface between the layer s and the base metal g (Fig. i) (it is assumed that plane-stress 
or plane-strain conditions prevail). At this moment, the material in the region of the crack 
tip (point 0 in Fig. i) is generally nonuniform in regard to its elastic and strength prop- 
erties. It should be noted that, in practice, it is quite often possible to ignore the non- 
uniformity of the elastic properties (but not the strength properties!), assuming here that 
there is a negligible difference between the Young's modulus and Poisson's ratio of the coat- 
ing and base metal. This assumption is valid for most deposited coatings and cold-worked 
and modified layers. Thus, uniformity will henceforth be assumed to exist. 

First we need to calculate the elastic stresses in a body with a coating but without 
a crack. We then examine the problem with a crack (Fig. i). Here, stresses are applied to 
the edges of the crack. The stresses are equal in magnitude but opposite in sign to the cor- 
responding stresses in the first problem. The local stress field near the end of the crack 
is determined from the solution of the second problem. 

In most cases of practical importance, it can be assumed that the normal load applied 
to the crack edges in the second problem is constant and equal to~y=--p =--El%(i--v~) -I , 
while the shear load is equal to zero for the free boundary (Fig. i). Here, Es is the Young's 
modulus of the coating, gy is the strain at the point of the crack's location obtained from 
the solution of the first problem in the simplest case h § 0, Es = E~ (E_ is the Young's 
modulus of the substrate). This result can be rigorously proven for ~imo~t any thin coating 
when h/R ~ 1 and Es ~ Eg (or Es ~ Eg) (R is the radius of curvature of the surface at the 
point under consideration). At El ~ Eg, due to the presence of two small parameters Eg/Es 
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and h/R, under certain conditions it may be necessary to account for the bending of the shell 
(i.e., the term in the load on the crack which is linear with respect to the coordinate). 
However, such stiff protective coatings are almost never used, due to the high stress con- 
centrations in them. For metals, such coatings do not exist in nature (the Young's modulus 
of the most rigid material - diamond - is only six times greater than that of iron). 

We will introduce polar coordinates r0 with the center at the crack tip (Fig. i). We 
will examine a small region around the crack tip (r ~ h). A fatigue crack can travel from 
point O along three possible paths (Fig. 2), depending on the relation describing the strength 
nonuniformity: a) in the old direction O = 0, but in the substrate; b) along the interface 
between the substrate and the coating O = • c) in the material of the layer, near the 
interface 0 = • Other conditions being equal, the length of reliable service of the 
structure will obviously be shorter in the first case than in the second and third cases - 
when the interface slows the crack. In evaluating the safe life of a structure at the de- 
sign stage, it is absolutely mandatory that this circumstance be taken into account by inten- 
tional alteration of the properties of the coating and the interface in the appropriate di- 
rection. It is important to emphasize that, as arule, excessively strong coatings lead to a 
reduction in service life. 

On the whole, the optimum coating is that coating which maximizes service life. The 
service life is determined by the sum of four terms: the period to the nucleation of a fa- 
tigue crack; the period of growth of the crack through the entire thickness of the coating; 
the period during which the crack is held at the interface; the period of subcritical growth 
in the substrate. Each of these periods must be studied independently, since, under certain 
conditions, any one of them may prove to be decisive in the choice of the optimum coating. 
We will examine the third period in greater detail. 

The stress 0 8 near the crack tip has the form [5] 

o0 = Kx(~]+ i)(2~)-t/~rX[(2 + ~ cos ~0 + B cos (l  + 2)0] 

(0 <~ 0 <~ ~/2)~ 
B = k~ (3~ + 2) --k s (! § 2X) + ~ +  i (1) 

t + k  t 

k - - t  k2 1- -vg  ~l kl = 4 ( t _ ~ 0  =t - - - : -~ ik ,  k = - -  ' ~g~ 

K, = n(k, vl~ ~g)p(nh)-~, 

where ~ and ~ a r e  t h e  P o i s s o n ' s  r a t i o  and s h e a r  modulus ( t h e  s u b s c r i p t s  s and g deno te  t he  
c o a t i n g  and t h e  s u b s t r a t e ,  r e s p e c t i v e l y ) ;  K I i s  t h e  s t r e s s  i n t e n s i t y  f a c t o r  in  t h e  g iven  
problem ( s e e  F ig .  1) ;  n (k ,  vs ~ )  i s  a f u n c t i o n  o f  e l a s t i c i t y  t h e o r y  which i s  de t e rmined  by 
numerical methods (its graph from [4] is shown in Fig. 3 with ~s = ~g = 0.3); ~ is the unique 
real root of the equation 

c o s ~ =  a +  b ( ~ + i ) '  

2k~--2ktk~+2kl--ks+t 2k, 
a = 2 ( k ~ -  k~) (k, + ,) ' b = k---~i'~t/' 

l y i n g  in  t h e  i n t e r v a l  ( - 1 ,  0 ) .  The dependence of  t h i s  r o o t  on k a t  vs = Vg = 0 .3 ,  t aken  from 
[5 ] ,  i s  shown in  F ig .  4. In  t h e  most i m p o r t a n t  s p e c i a l  ca se  of  an i s o t r o p i c  homogeneous body,  
when ~s = 9g, ~s = Ug, we have 
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K~ = L1225p(nh)l/2. (2) 

We will use K8(8) to represent the function Ke = ~(2~)1/~r-~ determined by Eq. (i). It 
can be seen that this function is monotonically decreasing (Fig. 5). The graph of the depen- 
dence of fracture toughness Kic on 8 is shown qualitatively, assuming here that the interface 
is the weakest element. 

First we will examine monotonic loading, when the load p increases monotonically over 
time. Then, in accordance with the theory of generalized normal rupture [4] (which has been 
substantiated empirically), a,crack in the direction 8 = 8, in which K8(8 ,) = Klc(8,) , while 
in all of the other directions 8 ~ 8,, K8(8) < Kic(8). If the fracture toughnesses of the 
coating and interface are lower than the fracture toughness of the substrate, then the curve 
K8(8) first intersects the curve Kc(8) at 8 = 0 or 8 = 7/2 (Fig. 5), i.e., one of the three 
cases discussed above is realized. 

We will refer to the coating as being of equal strength with respect to the limit load 
if its properties are such that the curve K8(8) initially touches the curve Kic(@) simul- 
taneously at the points 8 = 0 and 8 = 7/2 [here, the crack moves simultaneously in both di- 
rections, with the formation of retarding "shear" (see Fig. 2d)]. In accordance with (i), 
we have 

at 0 = 0 K 8 = KI(k+ i)(k + 2 + B), (3) 
= [ o ] :at 0 = T  K ~  t) (2+~)cos + B c o s ~ ( ~ + 2 )  . 

For a homogeneous body, in accordance with (2),  we have 

at e = o  K e = g , ,  at 0=~Z2  K , = K d ( 2 V ~ .  (4) 

We use (3) to der ive the fol lowing equa l - s t r eng th  condi t ion :  

at Kleg ~ < Klc ~ 

g,(~ + I)(X + 2 + B) = g,~ 

K~(k + i)[(2 + k)cos-~-~ + B cosU (X~-2_______/)] = K~eg~., 

i . e .  , 

(~ + 2 +  B)Kir = King[(2 + k)cos~ + B c o s ~ ] ;  

~(x+2)] (k+2+B)Kir  (2 + ~) cos~  + Bcos 2 J 

(5) 

(6) 

at Klcg ~ > Klc ~ 
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Here, Klcg s is the fracture-toughness of the interface, having the dimension of force divided 
by the length to the power 2 + ~; Klcg and Klc s are the fracture toughnesses of the substrate 
and the layer. 

In accordance with (4), we have the following equal-strength condition for a material 
which is uniform with respect to its elastic properties (but not its strength) 

2~f2min(Kxcgz~ K~ct) = K ~  (~ = - - 1 / 2 ,  ~l = vg, E l = Eg). (7)  

Thus,  f o r  an e q u a l - s t E e n g t h  c o a t i n g  d u r i n g  mono ton ic  l o a d i n g ,  t h e  f r a c t u r e  t o u g h n e s s  o f  
the substrate should be 2~2 times greater than the fracture toughness of the interface (if 
K!cgs <Klc s or the coating (if Klcgs >Klc ~). The values of Klcg s and Klc~ can be con- 
trolled by resorting to various surface treatments. The coating becomes a protective layer 
(protecting the material from cracks under limit loads) if the equal sign in equal-strength 
conditions (5)-(7) can be replaced by the sign <. 

Let us examine cyclic loading, when the load p is a periodic function of time. Let a 
fatigue crack grow from the point O - the crack tip at the interface - at a certain angle 8 
(see Fig. i). In this case, the fatigue-crack growth rate ds will be a certain function 
of the maximum and minimum values of K 8 over a cycle ds = f(KSmax, KSmin , 8). In the gen- 
eral case, the rate will also depend on the angle 8. It is natural to propose that the di- 
rection of growth of the main fatigue crack is given by the angle 8 = 8, for which the func- 
tion f reaches its maximum 

max / (K0max (0), Komm ~), 8) for 8 = 0,.  (8 )  
0 

In  t h e  o t h e r  d i r e c t i o n s ,  f a t i g u e  c r a c k s  e n t e r  t h e  u n l o a d i n g  r e g i o n  and s t o p  g rowing .  

In the case of two different homogeneous media, only the above three variants a-c are 
in competition at point O, while the condition for selection of the direction (8) takes the 

%s fs (f~, fs and fs are the rates of growth of the fatigue crack form ds = max {fg, '8 
in the directions 8 = = ~/2 and ~ = ~/2 + 0, respectively). These quantities are de- 
termined experimentally. If the difference in the elastic constants of the two media can be 
ignored, then the values of fg and fs can be taken from the curves ds - AK for the corre- 
sponding homogeneous material-with AK determined from Eqs. (i). Here, fig is found from the 
analogous curve recorded for a fatigue crack growing along the interface. 

The above remarks make it obvious that the directions of growth will generally be dif- 
ferent for curvilinear fatigue cracks growing under low alternating loads and equilibrium 
cracks growing under limit loads. This is one consequence of the general result that the 
behavior of materials and structures is different under large and small loads: a structure 
might withstand large limit loads but have a relatively short life under low loads, and vice 
versa. 

In connection with the above finding, it is natural to consider a coating to be equal- 
strength with respect to fatigue life if the directions 8 = 0 and 8 = ~/2 are equivalent, 
i.e., 

If 

]g = max (/t,/Ig). (9) 

lg < max @t, llg)~ (lO,) 

then the coating can be considered protective against fatigue cracks. 

It follows from this that given a durable coating and substrate (i.e., with values of 
fs and fg satisfying the inequality f > fs a designer should choose the technology for _ g , 
forming the bond between the coating and the substrate so as to satisfy the condition fig > 
fg at fg > fs guaranteeing that the coating will help protect against fatigue cracks. At 
the same time, it is also necessary to ensure that the strength of the bond is adequate under 
limit loads [3]. It should be emphasized that conditions (9) and (i0) include the working 
load and the thickness of the layer; thus, the coating and its bond with the substrate should 
be designed for a certain level of cyclic or variable loading (and for a specified safe life). 
Even in the case of the simplest power relation As ~ (AK) m, p ceases to be dependent on h 
only when the constant m is the same for the substrate and the interface. 

When the properties of the surface layer change smoothly with depth and there is no in- 
terface, the coating does not protect against fatigue cracks because the crack always moves 
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into the base metal without stopping. In this case, it is necessary to strive to provide for 
orthotropy in the surface layer in regard to the growth of longitudinal and transverse fatigue 
cracks. Here, as before, the necessary condition for the slowing of transverse fatigue cracks 
is expressed by inequality (I0), where s is the longitudinal direction in the layer. 

Fatigue-Crack Growth alon$ the Coating-Substrate Interface. Let a plane region in which 
bonding between the coating and substrate is absent be located on the coating-substrate in- 
terface (the initial crack, shown in plan in Fig. 6a). This crack may have developed either 
as a result of processing or as a consequence of retardation of a transverse fatigue crack in 
the layer at the interface by the above-described mechanism. We will assume that the char- 
acteristic linear dimension of the crack in plan is much greater than the thickness of the 
coating. 

We will also assume that the stress-strain state of the part at the site being examined 
(without allowance for the crack and coating) reduces to the principal strains el and g2 and 
the stresses: 

E 6 E~ 

The direction 3 coincides with a normal to the free surface of the body. 

We suppose that e I and ~2 include not only the strains which develop as a result of the 
service loads, but also large-scale (compared to h) plastic and thermal strains. It is easy 
to see that if the coating over the crack is continuous, then no stress concentration will 
develop at the crack front. Thus, the force driving the crack and expressed by the invariant 
F-integral will be equal to zero. Here, the contour of the crack is stationary. If the 
coating has through transverse cracks or scratches, then the F-residue at the crack front will 
be nontrivial and the crack will move [4, 6]. 

We will restrict ourselves to the most concrete and important case, when the system of 
through cracks is such that it reduces all of the stresses in the region of the coating above 
the crack to zero (except for a narrow strip on the order of the coating thickness along the 
border of the crack, where there are three-dimensional stress distributions resulting from 
the external field). 

Let us examine the neighborhood of an arbitrary point O on the crack front. The neigh- 
borhood is small compared to the radius of curvature of the crack contour at this point but 
is large compared to the thickness of the coating (Fig. 6b). We will use x and y to denote 
the normal and tangent to the contour of the crack at this point. 

In the plane problem in Fig. 6b, the stresses in the strip 0 < y < h approach zero as 
x + -~. In the remainder of the region, as x + • the stresses and strains approach their 
unperturbed values 

sx = e lcos~ ~ e2sin2~ ey = essin~ n L e~cos~ (11)  

e~y = (t /2)(s~-- sl) sin 2a 

( t h e  s t r e s s e s  a r e  d e t e r m i n e d  from H o o k e ' s  l aw) .  Here ,  a i s  t h e  a n g l e  made by t h e  normal  t o  
t h e  c o n t o u r  o f  t h e  c r a c k  w i t h  t h e  d i r e c t i o n  sz .  
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We will calculate the F-residue over the small neighborhood enveloping the point O. To 
do this, we take the closed contour Z, consisting of the free edges of the crack, the free 
surface of the body, the lines x = • I at L + ~, and lines parallel to the x-axis and re- 
moved at distance L 2 from this axis at L 2 + ~ (rectangle with a slit - see Fig. 6b). In 
practice, it suffices to take L I and L 2 to be on the order of 3h. Using the theory of F- 
integration [3, 4], we obtain 

~[~ I ) ] t h(~yey--ffxex--2T=yex~ (12) r = + -~ puiui nx -- ai~ul,xnj dE = -- h (Z| -- axex -- 2~=~ex~)= -- -~ 

where Z is the strain energy of a unit volume; p is density; ui is velocity; u i represents 
displacements; oij represents stresses; the stresses with the subscripts x and y and the 
quantity Z~ pertain to the unperturbed state of the coating (Ii); F is the force driving the 
crack [4, 6]. Thus, in the general case (when the plastic region is large), the rate of 
growth of a fatigue crack ds is expressed by the formula [3, 4] 

dl/dN = ](rmax, From) (i 3) 

(f is a certain function; Fma x and Fmi n are the maximum and minimum values of F per cycle). 

Using the similarity postulate and the general energy concept for small plastic re- 
gions - whereby it is possible to employ the notion of a stress intensity factor - we find [4] 

dz (rm  - -  - -  
= - + in r-j= t >  > 

/ 

(6, Fc, Fy are adhesion constants of the coating-substrate interface). In accordance with 
(11)-(13), the rate of growth of the fatigue crack is independent of its dimensions and the 
number of cycles, but it depends considerably on the angle a (and, of course, on the periodic 
external load). 

Let the equation of the contour of a moving crack have the form f(x, y, t) = 0 (t is the 
time, measured in cycles). We introduce the following differential equation for the function 
f: 

vxO J -[- vuOy~ -~ Off = O. (14) 

Here, v x and Vy are components of the velocity of the crack contour at the point being ex- 
amined. These components are determined from the formulas v x = v(a) cos a, Vy = v(a) sine, 
v(=) = ds tana = 3yf/Bxf (v is the normal velocity of the fatigue-crack contour). 

Thus, the motion of the contour of the fatigue crack is found from the solution of a 
first-order nonlinear differential equation in partial derivatives. This equation can easily 
be solved numerically by using the time-step method. 

In the simplest case of uniaxial tension, when e 2 = O, we calculate 

r = hEle~c~ [ t - - t g ~ =  + 2 ( t - - v 0 s i n 2 a ] .  (15 )  
D 

For example, let the initial crack be a narrow ellipse of the length 2b elongated along the 
direction of tension e I (the hatched region in Fig. 7). The fatigue crack begins to move 
during cyclic tension; here, in accordance with (15), the central region will move forward 
at a greater velocity than the edge, while the crack tips will remain stationary. If we 
consider that Fy = O, then the crack will continue to move until the driving force F is 
greater than zero over the entire contour of the crack. When r = O, motion of the crack 
ceases. Thus, the condition F = 0 makes it possible to directly determine the limiting con- 
tour of the crack without solving the differential equation. It follows from this and (15) 
that 
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t g~a ,  = I + 2 0 -  ~ l ) s in2a , .  (16)  

Thus ,  t h e  l i m i t i n g  c o n t o u r  o f  t h e  c r a c k  i s  a rhombus  w i t h  t h e  d i a g o n a l  2b and t h e  d i -  
v e r g e n c e  angle 2~,, being a root of Eq. (16). For example, ~, = 52 ~ with vs = 0.5, a, = 55 ~ 
with vs = 0.3, and ~, = 58 ~ with vs = 0. It is interesting that the limiting contour is 
formed after a finite number of cycles N,. This number is easily found if we divide the 
crack velocity into the path, of length b sina,, which is traversed by the central point of 
the contour along the diameter of the rhombus (with a = 0). For example, in the simplest 

�9 2 2 4 c a s e ,  when e 1 rain = 0, d l / d N  = AF~ax, we can  u s e  (15)  t o  f i n d  N ,  ~ 4b(l - -  v~ ~ s i n ~ , / ( A h  Etelmax). 

When Fy > 0, the limiting contour will be inside the rhombus. In the case of an initial 
crack of arbitrary contour, it is now easy to construct the limiting contour. We draw tan- 
gents to the initial contour at the angle ~/2 - ~, with the tensile direction. 

Structure of a Delamination Crack. The question of the stress and strain distribution 
near the front of a delamination crack with allowance for the surface of the body is fairly 
complex in a computational sense, since it requires analysis of exact equations describing 
the deformation of the material at distances on the order of the thickness of the coating. 
Proceeding on the basis of the "microscope principle," we will study the region in this case 
as a half-plane with a semi-infinite slit parallel to the boundary. Plane strain conditions 
prevail in the region [3]. Figure 8 shows the region along with the resultants of the force 
and moment, referred to the coordinate origin and the crack tip. 

We will examine this problem in thesimplest linear-elastic formulation, assuming that 
the elastic constants of the coating and substrate are identical. The exact solution of this 
problem was obtained in [7] by an elegant but very laborious analytical method using a Rie- 
mannian matrix problem. Thus, the homogeneous isotropic half-plane y < h has a semi-infinite 
slit at y = 0, x < 0. The slit is parallel to the boundary of the half-plane. The edges 
of the slit and the boundary y = h are assumed to be free of loads. 

The resultant of the stresses ay and Tx$ in the section y = 0 is equal to the forces N 
and T, while their moment relative to the orlgin is equal to M. 

Let us present the final results of the solution for the stress intensity factors [7] 

K~ = 1.932M/h3/2 - -  0~5314T/]/ 'h qi ~r  ( 17 ) 

K H  = - - i . 5 0 6 M / h a / 2  + i . 3108T/~ r~  + 0:033N/~/h.  

We check them by means of the invariant F-integral. 

The forces N and T and the moment M in the given problem are created by the following 
stress state in the strip 0 < y < h at x + -~: 

~= = 2(3M - -  2 h T ) h  -2 + 6 y ( h T  - -  21~Dh-a + 6 x N h - 3 ( 2 y  _ h), % = O, x=y = - - 6 N y h - 3 ( y  - -  h). (18)  

We calculate the r-residue at the crack tip for the given problem, using the contour 
in Fig. 6b in a simple calculation [3, 4] similar to (12). We will present the intermediate 
calculations for the displacements at 0 < y < h and x + -~ 

u = ! - ~  ~ 2xh  -2  [3M - -  2 h T  + 3yh -~  (hT  - -  2~0]  + 

3 

( i v )  
i + v { 2vyh-2  (3M - -  2hT)  - -  3h - 3  (hT  - -  2M) [vy 2 + (i - -  v) x~]} + v = - - ~  

+ ! _ ~  N h  -3  [2x a (i - -  v) - -  6 v x y  (y - -  h)] + C 2 

(Ee~ = ( l  - -  v~)a~, Ee~ = - - ~ ( i  + ~)a~,  E e ~  = (t + ~)~=~~ ~ = 0) 

(C 1 and C: a r e  n o n e s s e n t i a l  c o n s t a n t s ) .  

Equations (18) and (19) constitute the exact solution of the equations of elasticity 
theory for the strip 0 < y < h with the free boundary ay = Txy = 0 at y = 0, y = h and with 
specified values of M, T, and N in the section x = 0. 

Thus, 
h 

F = .~o=e~ + T~ys=u - -  ~ - ~ y  dy = .6M~h - a -  6 M T h  - z  + 2T~h -~  + - ~ - N ' h -  / .  (20)  
0 
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Equation (20) is also valid for a plane stress state if we put 9 = 0 in the equation. 

Let us attempt to calculate the stress intensity factors from the known value of the 
r-residue. We will restrict ourselves to the case of three-independent loading parameters 
Pl, P2, P3 (as in the given Problem). In accordance with the superposition principle, we 
have K I = ~iPi, KII = ~iPi (i = I, 2, 3) (~i and ~i are sought coefficients which are inde- 
pendent of Pi)- We then find 

v~..~ ~ ! -- v z 1 - -  v 2 ' 
F = (K~ + KI I  ) = E (~iah + ~i~k) PiPh =-,-E--AikpiPh (i,k = 1 , 2 , 3 )  (21) 

(Aik are known coefficients). Thus, we obtain six equations to determine six unknowns: 

~ i ~  + ~ h  = Aih  (i, k = t ,  2, 3). ( 2 2 )  

We write the solution of this system of equations in the form 

? ,  ~ ?3 + a rccos  A~ A~a ] / r ~ ,  ~'2 = ~3 * a rccos  VrAzz,Aa ~ .  

(a l  = A n ,  a2 = A22, a s = Aa3), 

since the following condition must be satisfied for system (22) to be solvable: 

A23 a~2 arccos  A ~ - - 3  - -  a r c c o s - -  = acccos ( 2 3 )  
V"A1,Aa3 V A2:~A3a V ~ "  

Thus, all of the stress intensity factors can be determined from F with an accuracy up 
to one unknown constant. Also, it can be shown that this result is valid for any number of 
load parameters. Thus, in problems with a known value of F, to find the coefficients K I and 
KII, it is sufficient to determine just one value K I or KII with any one value of one of the 
load parameters (i.e., one of the coefficients ~i or 8i)" 

It is not hard to see that, in accordance with (17), the coefficients Aik in Eq. (21) 
of the given problem do not satisfy condition (23). This is not the result of some elementary 
computing error. The reason is nontrivial, and to explain it we will look closer at the prob- 
lem we have been considering (see Fig. 8), with M = T = 0, N ~ 0. We will refer to this as 
problem N. In accordance with (18), the stress o x in the strip 0 < y < h approaches infinity 

h 

as x + -~, Meanwhile, in each section of the strip x = const + -~, M Jyaxdy =--Nx, while 
0 

the resultant force N ~ 0, T = 0. Thus, judged on the basis of the theorem of correct bound- 
ary conditions [4], the N problem is incorrect because one of the necessary conditions for 
correctness of a boundary-value problem with a cylindrical, infinitely-distant point - 
boundedness of the stresses at infinity - is not satisfied. 

We can construct as many different solutions of the N problem as we like in the class of 
stresses not bounded at x + -~, 0 < y < h and giving M ffi 0, T = 0, N = const ~ 0 in the sec- 
tion x ffi -0. With M = 0, T = 0, Eqs. (18) and (19) give one solution from this solution set. 
The F-integral diverges in the neighborhood of the cylindrical, infinitely-distant point in 
the N problem. Thus, it can take any value, depending on the path of integration and the 
chosen asymptote [in particular, it is finite and equal to (20) when M = 0, T = 0 - as in the 
given case]. The same as true in regard to the stress intensity factors K I and KII of the 
N problem: the solution in [7] is incorrect when M = 0, T = 0, N ~ 0. 

It should be noted that if the F-integration rule [3, 4] is applied to the divergent 
integral (20) in the N problem, then we obviously obtain F = 0. Since F ~ N 2, it follows 
that N = 0: this is the condition of correctness of the N problem. 
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APPLICATION OF METHODS OF THE MECHANICS OF HETEROGENEOUS MEDIA TO 

DESCRIBE DISPERSION PROCESSES IN AN ELECTROMAGNETIC FIELD 

S. Yu. Arutyunov, I. 
V. V. Kafarov, V. G. 
and V. P. Solov'ev 

N. Dorokhov, 
Korniichuk, 

UDC 538.4:621.926.085.54-185 

The authors of [i, 2] found equations describing the thermohydromechanics of a two-phase 
polydisperse medium which take into account refinement of the particles of the disperse phase. 
Here, we use the methods of the mechanics of heterogeneous media [3] and fundamental equa- 
tions of electrodynamics [4] to obtain a mathematical description of the refinement process 
in an electromagnetic field (EMF) which considers the collision, destruction, and formation 
of disperse-phase particles and the effect of the EMF on these events. 

i. The assumptions used in [1-3] are adopted here to study the motion of a hetero- 
geneous mixture of three phases in an EMF. The first phase is the carrier phase (liquid or 
gas), while the second and third phases are in the form of individual particles of a material 
undergoing refinement and bodies of different sizes undergoing fragmentation. 

We introduce the volume contents of the phase ~i and the mean densities Pi (i = i, 2, 
3) at each point of the volume occupied by the mixture: 

R R~, R R 2 

0 0 R 1 

Here, the polydispersity of the second phase is characterized by the function f2(r)dr [the 
number of particles undergoing refinement per unit volume whose dimensions (volumes) are 
within the range (r, r + dr)], while the polydispersity of the third phase is characterized 
by the function f3(~)dp [the number of bodies undergoing fragmentation per unit volume whose 
dimensions (volumes) are within the interval (~, ~ + d~)]; the subscripts i, 2, and 3 per- 
tain to the carrier phase, the disperse phase, and the phase comprised of bodies being frag- 
mented; R I > R. Following [i, 2], we introduce the notion of an r-phase as an aggregate of 
particles whose dimensions lie within the interval (r, r + dr). We also introduce the no- 
tion of a ~-phase as an aggregate of fragmenting particles whose dimensions lie within the 
interval (~, ~ + d~). Each phase represents a charged, electrically-conducting, polarized, 
and magnetized medium in the EMF. 

2. In constructing models of continua interacting with an EMF, various methods of for- 
mulating the equations of electrodynamics can be used - depending on the expressions used 
for the local field strengths E,, E~(r), E3(~- ) and H,, H2(r), H3(~) . However, after one of these 
formulations is chosen, all of the conservation laws of mechanics must be considered with 
allowance for this formulation. The formulation of the equations of electrodynamics cur- 
rently in widest use is the Chu model [5]. We assume that 

E ~ + I * o H ,  X v , = E , ,  H ~ - - % E ,  X v , = H ~ ,  

E~ (r) + ,uoH 2 (r) X v2 (r) = E 2 (r), H* (r) - -  %E 2 (r) X v 2 (r) = H 2 (r), 

E *  * a (~) + ,uoH~ (~) X v a (,a) = E 3 (!*), H3 (,~) - -  ~oE3 0*) X v~ (1*) = H~ (u). 

Then the electrodynamical equations take the form 
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